Generalizing over Lexical Features: Selectional Preferences for Semantic Role Classification
نویسندگان
چکیده
This paper explores methods to alleviate the effect of lexical sparseness in the classification of verbal arguments. We show how automatically generated selectional preferences are able to generalize and perform better than lexical features in a large dataset for semantic role classification. The best results are obtained with a novel second-order distributional similarity measure, and the positive effect is specially relevant for out-of-domain data. Our findings suggest that selectional preferences have potential for improving a full system for Semantic Role Labeling.
منابع مشابه
Selectional Preferences for Semantic Role Classification
This paper focuses on a well-known open issue in Semantic Role Classification (SRC) research: the limited influence and sparseness of lexical features. We mitigate this problem using models that integrate automatically learned selectional preferences (SP). We explore a range of models based on WordNet and distributional-similarity SPs. Furthermore, we demonstrate that the SRC task is better mod...
متن کاملImproving Chunk-based Semantic Role Labeling with Lexical Features
We present an approach for Semantic Role Labeling (SRL) using Conditional Random Fields in a joint identification/classification step. The approach is based on shallow syntactic information (chunks) and a number of lexicalized features such as selectional preferences and automatically inferred similar words, extracted using lexical databases and distributional similarity metrics. We use semanti...
متن کاملVerb Sense Disambiguation Using Selectional Preferences Extracted with a State-of-the-art Semantic Role Labeler
This paper investigates whether multisemantic-role (MSR) based selectional preferences can be used to improve the performance of supervised verb sense disambiguation. Unlike conventional selectional preferences which are extracted from parse trees based on hand-crafted rules, and only include the direct subject or the direct object of the verbs, the MSR based selectional preferences to be prese...
متن کاملImproving Statistical Machine Translation with Selectional Preferences
Long-distance semantic dependencies are crucial for lexical choice in statistical machine translation. In this paper, we study semantic dependencies between verbs and their arguments by modeling selectional preferences in the context of machine translation. We incorporate preferences that verbs impose on subjects and objects into translation. In addition, bilingual selectional preferences betwe...
متن کاملImproving Semantic Role Classification with Selectional Preferences
This work incorporates Selectional Preferences (SP) into a Semantic Role (SR) Classification system. We learn separate selectional preferences for noun phrases and prepositional phrases and we integrate them in a state-of-the-art SR classification system both in the form of features and individual class predictors. We show that the inclusion of the refined SPs yields statistically significant i...
متن کامل